
Prolog lecture 8

Go to:

http://etc.ch/3CQQ

Or scan the
barcode

http://etc.ch/3CQQ

Today's discussion
Videos

Sudoku

Constraints

Q: What does Prolog allow us to do (other than
coding in a different way) that other languages can't?
Not meaning to sound dismissive just curious of
applications!

A: ...

void run(A a) {

a.f();

}

static void main(String[] args) {

run(new B());

}

Does this program crash?

class A {

void f() {

throw new AssertionError();

}

}

class B extends A {

void f() {

System.out.println("hi!");

}

}

void run(A a) {

a.f();

}

static void main(String[] args) {

run(new B());

}

Need to know the set of objects that
a could point to.

This is called 'points-to' analysis

Implement list reverse (without an accumulator)
Vote when done

http://etc.ch/3CQQ

Implement list reverse (without an accumulator)
reverse([],[]).

reverse([H|T],R) :- reverse(T,R1), append(R1,[H],R).

Implement list reverse (with an accumulator)
Vote when done

http://etc.ch/3CQQ

Implement list reverse (with an accumulator)
reverseAcc([],Acc,Acc).

reverseAcc([H|T],R,Acc) :- reverseAcc(T,R,[H|Acc]).

Implement reverse with difference lists
Which version of reverse should we start with?

1. reverse without an accumulator
2. reverse with an accumulator

http://etc.ch/3CQQ

Implement reverse with difference lists
Vote when finished

http://etc.ch/3CQQ

Implement reverse with difference lists
1) Replace all lists in the append with difference lists
2) Choose the correct form of empty list:

a) if you are generating then use A-A
b) if you are testing then use []-[]

3) Manually unify the variables involved in the append in the places that append
would make them equal

4) Remove the append because its now redundant

http://etc.ch/3CQQ

Implement reverse with difference lists

reverseD([],[]).

reverseD([H|T],R) :- reverseD(T,R1),

 append(R1,[H],R).

Implement reverse with difference lists

reverseD([],A-A).

reverseD([H|T],R-S) :- reverseD(T,R1-S1),

 append(R1-S1,[H|H1]-H1,R-S).

Implement reverse with difference lists

unify S1 with [H|H1]

reverseD([],A-A).

reverseD([H|T],R-S) :- reverseD(T,R1-[H|H1]),

 append(R1-[H|H1],[H|H1]-H1,R-S).

Implement reverse with difference lists

unify R with R1

reverseD([],A-A).

reverseD([H|T],R1-S) :- reverseD(T,R1-[H|H1]),

 append(R1-[H|H1],[H|H1]-H1,R1-S).

Implement reverse with difference lists

unify S with H1

reverseD([],A-A).

reverseD([H|T],R1-H1) :- reverseD(T,R1-[H|H1]),

 append(R1-[H|H1],[H|H1]-H1,R1-H1).

Implement reverse with difference lists

remove the append

reverseD([],A-A).

reverseD([H|T],R1-H1) :- reverseD(T,R1-[H|H1]).

What's the difference?
reverse([],[]).

reverse([H|T],R) :- reverse(T,R1), append(R1,[H],R).

reverseAcc([],Acc,Acc).

reverseAcc([H|T],R,Acc) :- reverseAcc(T,R,[H|Acc]).

reverseD([],A-A).

reverseD([H|T],R1-H1) :- reverseD(T,R1-[H|H1]).

Q: Is writing CLP programs using the library strictly
examinable, or is it more about the concepts of
CLP?

A: The concepts. Given the relatively short time
devoted to it any question on this would be about the
principles and you would be given the syntax if you
needed it.

Challenge: Plan your day (CLP)
Supervision work: 55 minutes

Email: 10 minutes

Laundry: 5 minutes to start it, 60 mins wash/dry, 10 mins to put away.

Plan your day (CLP)
:- use_module(library(clpfd)).

?- Tasks = [(Sv,55),(E,15),(Ls,5),(Lf,10)],

Add the constraint that the laundry takes 60 minutes

http://etc.ch/3CQQ

Plan your day (CLP)
:- use_module(library(clpfd)).

?- Tasks = [(Sv,55),(E,15),(Ls,5),(Lf,10)],

 [Sv,E,Ls,Lf] ins 0..100,

 Ls+65 #=< Lf,

Plan your day (CLP)
:- use_module(library(clpfd)).

?- Tasks = [(Sv,55),(E,15),(Ls,5),(Lf,10)],

 [Sv,E,Ls,Lf] ins 0..100,

 Ls+65 #=< Lf,

Add the constraint that we must finish all jobs in 100 minutes

http://etc.ch/3CQQ

Plan your day (CLP)
:- use_module(library(clpfd)).

notlate([]).

notlate([(S1,D1)|T]) :- S1 + D1 #=< 100, notlate(T).

?- Tasks = [(Sv,55),(E,15),(Ls,5),(Lf,10)],

 [Sv,E,Ls,Lf] ins 0..100,

 Ls+65 #=< Lf,

 notlate(Tasks),

We need to model a sequence of tasks

D1

S2S1

D2

http://etc.ch/3CQQ

Write a constraint that the tasks are in sequence

We need to model a sequence of tasks

D1

S2S1

D2

sequence([_]).

sequence([(S1,D1),(S2,D2)|T]) :- S1 + D1 #=< S2,

 sequence([(S2,D2)|T]).

… perm(Tasks,Order), sequence(Order) …

Plan your day (CLP)

800

[20,0,15,80]

15 20 90

Email Supervision work

75

L-in L-out

Laundry in progress

Plan your day (CLP)

800

[20,0,15,80]

15 20 90

Email Supervision work

75

L-in L-out

Time to relax!

Laundry in progress

End of the course
I hope you found the format helpful - please fill out the feedback forms!

Thank you for coming to the lectures!

